240 research outputs found

    Simulating disease transmission dynamics at a multi-scale level

    Get PDF
    We present a model of the global spread of a generic human infectious disease using a Monte Carlo micro-simulation with large-scale parallel-processing. This prototype has been constructed and tested on a model of the entire population of the British Isles. Typical results are presented. A microsimulation of this order of magnitude of population simulation has not been previously attained. Further, an efficiency assessment of processor usage indicates that extension to the global scale is feasible. We conclude that the flexible approach outlined provides the framework for a virtual laboratory capable of supporting public health policy making at a variety of spatial scales.high-performance computing; global modelling; disease transmission

    Restoring site percolation on a damaged square lattice

    Full text link
    We study how to restore site percolation on a damaged square lattice with nearest neighbor (N2^2) interactions. Two strategies are suggested for a density xx of destroyed sites by a random attack at pcp_c. In the first one, a density yy of new sites are created with longer range interactions, either next nearest neighbor (N3^3) or next next nearest neighbor (N4^4). In the second one, new longer range interactions N3^3 or N4^4 are created for a fraction vv of the remaining (pc−x)(p_c-x) sites in addition to their N2^2 interactions. In both cases, the values of yy and vv are tuned in order to restore site percolation which then occurs at new percolation thresholds, respectively π3\pi_3, π4\pi_4, π23\pi_{23} and π24\pi_{24}. Using Monte Carlo simulations the values of the pairs {y,π3}\{y, \pi_3 \}, {y,π4}\{y, \pi_4\} and {v,π23}\{v, \pi_{23}\}, {v,π24}\{v, \pi_{24}\} are calculated for the whole range 0≤x≤pc(N2)0\leq x \leq p_c(\text{N}^2). Our schemes are applicable to all regular lattices.Comment: 5 pages, revtex

    Single and multiple random walks on random lattices: Excitation trapping and annihilation simulations

    Full text link
    Random walk simulations of exciton trapping and annihilation on binary and ternary lattices are presented. Single walker visitation efficiencies for ordered and random binary lattices are compared. Interacting multiple random walkers on binary and ternary random lattices are presented in terms of trapping and annihilation efficiencies that are related to experimental observables. A master equation approach, based on Monte Carlo cluster distributions, results in a nonclassical power relationship between the exciton annihilation rate and the exciton density.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45145/1/10955_2005_Article_BF01012307.pd

    Cluster counting: The Hoshen-Kopelman algorithm vs. spanning tree approaches

    Full text link
    Two basic approaches to the cluster counting task in the percolation and related models are discussed. The Hoshen-Kopelman multiple labeling technique for cluster statistics is redescribed. Modifications for random and aperiodic lattices are sketched as well as some parallelised versions of the algorithm are mentioned. The graph-theoretical basis for the spanning tree approaches is given by describing the "breadth-first search" and "depth-first search" procedures. Examples are given for extracting the elastic and geometric "backbone" of a percolation cluster. An implementation of the "pebble game" algorithm using a depth-first search method is also described.Comment: LaTeX, uses ijmpc1.sty(included), 18 pages, 3 figures, submitted to Intern. J. of Modern Physics

    Finite-Size Scaling in Two-dimensional Continuum Percolation Models

    Full text link
    We test the universal finite-size scaling of the cluster mass order parameter in two-dimensional (2D) isotropic and directed continuum percolation models below the percolation threshold by computer simulations. We found that the simulation data in the 2D continuum models obey the same scaling expression of mass M to sample size L as generally accepted for isotropic lattice problems, but with a positive sign of the slope in the ln-ln plot of M versus L. Another interesting aspect of the finite-size 2D models is also suggested by plotting the normalized mass in 2D continuum and lattice bond percolation models, versus an effective percolation parameter, independently of the system structure (i.e. lattice or continuum) and of the possible directions allowed for percolation (i.e. isotropic or directed) in regions close to the percolation thresholds. Our study is the first attempt to map the scaling behaviour of the mass for both lattice and continuum model systems into one curve.Comment: 9 pages, Revtex, 2 PostScript figure

    Dynamics of Domains in Diluted Antiferromagnets

    Full text link
    We investigate the dynamics of two-dimensional site-diluted Ising antiferromagnets. In an external magnetic field these highly disordered magnetic systems have a domain structure which consists of fractal domains with sizes on a broad range of length scales. We focus on the dynamics of these systems during the relaxation from a long-range ordered initial state to the disordered fractal-domain state after applying an external magnetic field. The equilibrium state with applied field consists of fractal domains with a size distribution which follows a power law with an exponential cut-off. The dynamics of the system can be understood as a growth process of this fractal-domain state in such a way that the equilibrium distribution of domains develops during time. Following these ideas quantitatively we derive a simple description of the time dependence of the order parameter. The agreement with simulations is excellent.Comment: Revtex, 6 pages, 5 Postscript figure

    Broken scaling in the Forest Fire Model

    Full text link
    We investigate the scaling behavior of the cluster size distribution in the Drossel-Schwabl Forest Fire model (DS-FFM) by means of large scale numerical simulations, partly on (massively) parallel machines. It turns out that simple scaling is clearly violated, as already pointed out by Grassberger [P. Grassberger, J. Phys. A: Math. Gen. 26, 2081 (1993)], but largely ignored in the literature. Most surprisingly the statistics not seems to be described by a universal scaling function, and the scale of the physically relevant region seems to be a constant. Our results strongly suggest that the DS-FFM is not critical in the sense of being free of characteristic scales.Comment: 9 pages in RevTEX4 format (9 figures), submitted to PR

    Effects of Lateral Diffusion on the Dynamics of Desorption

    Full text link
    The adsorbate dynamics during simultaneous action of desorption and lateral adsorbate diffusion is studied in a simple lattice-gas model by kinetic Monte Carlo simulations. It is found that the action of the coverage-conserving diffusion process during the course of the desorption has two distinct, competing effects: a general acceleration of the desorption process, and a coarsening of the adsorbate configuration through Ostwald ripening. The balance between these two effects is governed by the structure of the adsorbate layer at the beginning of the desorption process
    • …
    corecore